PCI with Drug-Eluting Stents vs. CABG in Left Main Coronary Artery Disease: An Individual Patient Data Meta-Analysis

Marc S. Sabatine, Brian A. Bergmark, Sabina A. Murphy, Patrick T. O'Gara, Peter K. Smith, Patrick W. Serruys, A. Pieter Kappetein, Seung-Jung Park, Duk-Woo Park, Evald H. Christiansen, Niels R. Holm, Per H. Nielsen, Gregg W. Stone, Joseph F. Sabik, Eugene Braunwald
Disclosures

M Sabatine: Research grant support through Brigham and Women's Hospital from Abbott; Amgen; Anthos Therapeutics; AstraZeneca; Bayer; Daiichi-Sankyo; Eisai; Intarcia; Ionis; Medicines Company; MedImmune; Merck; Novartis; Pfizer; Quark Pharmaceuticals, and consulting for Althera; Amgen; Anthos Therapeutics; AstraZeneca; Bristol-Myers Squibb; CVS Caremark; DalCor; Dr. Reddy's Laboratories; Fibrogen; IFM Therapeutics; Intarcia; MedImmune; Merck; Moderna; Novo Nordisk; Silence Therapeutics.

B Bergmark: Research grants support through Brigham and Women's Hospital from Pfizer, Ionis, Quark, AstraZeneca/MedImmune, Amgen; Consulting/personal fees: Philips, Abbott Vascular, CSI, Abiomed, Servier, Janssen, Quark, Daiichi Sankyo

S Murphy: None

P O’Gara: None

P Smith: None

P Serruys: Consultancy/personal fee from SMT, Novartis, Philips, Xeltis, Merillife

A Kappetein: employee of Medtronic

S Park: Grants and personal fees from Abbott Vascular, grants from Daiichi-Sankyo, grants from ChongKunDang Pharm and Daewoong Pharm, grants and personal fees from Edwards, all outside the submitted work.

D Park: Grants from Daiichi-Sankyo, ChongKunDang Pharm, and Daewoong Pharm, personal fees from Edwards, grants and personal fees from Abbott Vascular, and personal fees from Medtronic, all outside the submitted work.

E Christiansen: Institutional research grants from Abbott, Biosensors, and Boston Scientific and speaker fees from Abbott.

N Holm: Institutional research grants from Abbott, Biosensors, Bbraun, Boston Scientific and Reva Medical, and speaker fees from Abbott, Reva Medical and Terumo.

P Nielsen: None

Institutional conflict: Columbia University received payments from Abbott for research activities related and not related to EXCEL, as well as royalties for sale of the MitraClip. Mount Sinai Hospital (New York, NY, USA) receives research funding from Abbott.

J Sabik: North American Surgical Principal Investigator, EXCEL trial

E Braunwald: Research grants (through the Brigham and Women’s Hospital) from AstraZeneca, Daiichi-Sankyo, Merck, and Novartis. Consultancies with Amgen, Boehringer-Ingelheim/Lilly, Bristol-Myers Squibb (MyoKardia), Cardurion, NovoNordisk, and Verve.
Background

• PCI with drug-eluting stents or CABG may be considered for the treatment of unprotected left main CAD in patients with low to intermediate anatomical complexity1,2,3

• Data comparing these two revascularization strategies stem principally from 4 landmark RCTs: SYNTAX (LM subgp),4 PRECOMBAT,5 NOBLE,6 and EXCEL7

• However, differences in trial composite endpoints and findings have led to persistent uncertainty among clinicians and practice guideline committees regarding the optimal revascularization strategy

CABG, coronary artery bypass grafting; CAD, coronary artery disease; PCI, percutaneous coronary intervention

1EHJ 2019;40:87-165; 2Circulation 2014;130:1749-67; 3JACC 2017;69:2212-41

Approach

• A collaboration was formed between
 – Independent Investigators: M. Sabatine, B. Bergmark, S. Murphy, P. O'Gara, P. Smith, E. Braunwald
 – Principal Investigators of the four trials: P. Serruys, A. Kappetein, S. Park, D. Park, E. Christiansen, N. Holm, P. Nielsen, G. Stone, J. Sabik

• The Independent Investigators
 – Created the statistical analysis plan
 – Performed all analyses
 – Drafted the manuscript, had complete control over the content, and vouch for the integrity of the analyses and the findings
Methods

• A one-stage meta-analytic approach was used on a combined dataset of individual patient data supplied by each trial

• Primary endpoint: all-cause mortality through 5 years

• 5 Secondary endpoints: cardiovascular death; spontaneous MI; procedural MI; stroke; repeat coronary revascularization

• Landmark analyses; supplemental analyses using 10-year mortality data (available in SYNTAX & PRECOMBAT); subgroup analyses

• Bayesian analyses to help quantify the probability and magnitude of any difference in mortality
Baseline & Procedural Characteristics

All 4394 patients judged by a Heart Team to be equally suitable candidates for either PCI or CABG

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>PCI (N=2197)</th>
<th>CABG (N=2197)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>66 (59-73)</td>
<td>66 (59-72)</td>
</tr>
<tr>
<td>Male</td>
<td>77</td>
<td>77</td>
</tr>
<tr>
<td>Diabetes</td>
<td>26</td>
<td>25</td>
</tr>
<tr>
<td>LVEF <50%</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>SYNTAX score</td>
<td>25 (19-31)</td>
<td>24 (18-31)</td>
</tr>
<tr>
<td>Left main only</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Left main + multivessel (≥2V) disease</td>
<td>52</td>
<td>53</td>
</tr>
<tr>
<td># stents / conduits</td>
<td>2 (1-3)</td>
<td>2 (2-3)</td>
</tr>
<tr>
<td>IVUS use</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>LIMA</td>
<td></td>
<td>96</td>
</tr>
<tr>
<td>All arterial</td>
<td></td>
<td>23</td>
</tr>
</tbody>
</table>

Data presented as median (IQR) or %.
Mortality

HR 1.10 (0.91-1.32)
P=0.33

PCI

CABG

Number at Risk
CABG 2197 2085 2042 2002 1939 1585
PCI 2197 2120 2068 2015 1942 1539

Δ 0.9% (-0.9, 2.8)
Bayesian Analysis of Mortality

86% probability that mortality greater with PCI vs. CABG

49% probability that mortality Δ between PCI & CABG $\geq 1\%$ over 5 yrs ($\geq 0.2\%/yr$)

5% probability that mortality Δ between PCI & CABG $\geq 2.5\%$ over 5 yrs ($\geq 0.5\%/yr$)

Absolute risk difference more likely than not $< 0.2\%/yr$
CV & Non-CV Mortality

<table>
<thead>
<tr>
<th>Type of Death</th>
<th>5-Year KM Rates</th>
<th>∆</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV</td>
<td>PCI: 6.2</td>
<td>CABG: 5.9</td>
</tr>
<tr>
<td>Non-CV</td>
<td>5.2</td>
<td>4.5</td>
</tr>
</tbody>
</table>

CV Mortality

HR 1.07 (0.83-1.37)

Cumulative Incidence

- Δ 0.4% (<0.1%/yr)
- Δ 0.7%
- Δ 0.3%
- Δ 0.1%
- Δ -0.1%
Two Trials with 10-Year Mortality Data

Cumulative Incidence

HR 0.96 (0.76-1.21)
P=0.72

CABG

PCI

Data from SYNTAX & PRECOMBAT

Number at Risk

<table>
<thead>
<tr>
<th></th>
<th>CABG</th>
<th>PCI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>648</td>
<td>657</td>
</tr>
<tr>
<td>0</td>
<td>604</td>
<td>623</td>
</tr>
<tr>
<td>2</td>
<td>577</td>
<td>591</td>
</tr>
<tr>
<td>4</td>
<td>531</td>
<td>547</td>
</tr>
<tr>
<td>6</td>
<td>500</td>
<td>519</td>
</tr>
<tr>
<td>8</td>
<td>463</td>
<td>475</td>
</tr>
</tbody>
</table>

An Academic Research Organization of Brigham and Women's Hospital and Harvard Medical School
Mortality Analysis Subgroups

- **Age ≥65 years (N=2496)**: HR (95% CI) = 1.23 (0.99-1.51), P_interaction = 0.09
- **Age <65 years (N=1898)**: HR (95% CI) = 0.84 (0.57-1.24)
- **Male (N=3371)**: HR (95% CI) = 1.06 (0.86-1.31), P_interaction = 0.60
- **Female (N=1023)**: HR (95% CI) = 1.18 (0.82-1.71)
- **Diabetes (N=1104)**: HR (95% CI) = 1.11 (0.82-1.52), P_interaction = 0.87
- **No Diabetes (N=3289)**: HR (95% CI) = 1.08 (0.86-1.36)
- **LVEF <50% (N=499)**: HR (95% CI) = 1.01 (0.67-1.53), P_interaction = 0.84
- **LVEF ≥50% (N=3562)**: HR (95% CI) = 1.04 (0.84-1.29)
- **eGFR <60 mL/min/1.73m² (N=531)**: HR (95% CI) = 1.30 (0.89-1.89), P_interaction = 0.23
- **eGFR ≥60 mL/min/1.73m² (N=2568)**: HR (95% CI) = 0.98 (0.75-1.27)

- **SYNTAX score <22 (N=1778)**: HR (95% CI) = 1.06 (0.77-1.48), P_interaction = 0.48
- **SYNTAX score 23-32 (N=1627)**: HR (95% CI) = 0.98 (0.73-1.30)
- **SYNTAX score ≥33 (N=953)**: HR (95% CI) = 1.30 (0.92-1.84)

- **Left main only (N=705)**: HR (95% CI) = 1.39 (0.82-2.36), P_interaction = 0.11
- **Left main + 1 vessel (N=1367)**: HR (95% CI) = 0.79 (0.57-1.11)
- **Left main + 2 vessels (N=1375)**: HR (95% CI) = 1.34 (0.96-1.86)
- **Left main + ≥3 vessels (N=907)**: HR (95% CI) = 1.14 (0.78-1.66)
CV Mortality and SYNTAX Score

\[P_{\text{interaction}} = 0.15 \]

\[\text{Hazard ratio for PCI vs. CABG} \]

SYNTAX score

CABG better

PCI better
MI & Repeat Revascularization

Spontaneous MI

HR 2.35 (1.71-3.23); P<0.0001
Absolute Δ 3.5%; NNT$_{5y}$ = 29

Repeat Revascularization

HR 1.78 (1.51-2.10); P<0.0001
Absolute Δ 7.6%; NNT$_{5y}$ = 14
Procedural MI

Protocol Definition

OR 0.65 (0.47-0.92)
P=0.013

PCI: 3.2%
CABG: 4.7%

UDMI (SYNTAX & EXCEL)

OR 1.42 (0.88-2.30)
P=0.15

PCI: 3.2%
CABG: 2.3%

• CK-MB >5× + new Qw [or angio or imaging in some trials]
• [CK-MB >10× in some trials]

• PCI: cTn >5× + ST ∆s, Qw, angio, or imaging [or sx]
• CABG: cTn >10× + Qw, angio, or imaging
An Academic Research Organization of Brigham and Women’s Hospital and Harvard Medical School

Stroke

1st Year
- 13 vs. 35 events
- HR 0.37 (0.19-0.69)
- P=0.002
- Absolute Δ 1.0%

Beyond 1st Year
- 42 vs. 28 events
- HR 1.49 (0.93-2.41)

Cumulative Incidence

Years of Follow-up

HR 0.84 (0.59-1.21)
- P=0.36

CABG
- 3.1%

PCI
- 2.7%
Summary

Comparing PCI w/ DES vs. CABG in Pts w/ LM CAD, median SYNTAX score of 25, and deemed equally suitable candidates for either revascularization approach:

No statistically significant difference in survival at 5 yrs (and 10 yrs)
Bayesian approach suggested Δ favoring CABG probably exists (more likely than not $<0.2\%/y$)
Possible CV mortality benefit of CABG appeared confined to Pts w/ high SYNTAX scores

Differences in risk of procedural MI depended on the definition used
The nuances of these data emphasize the importance of a Heart Team approach to assist patients in reaching a treatment decision that is best for them.